

Identifying Artist from Artwork with CNN Image Classification

Alison Ding

Introduction

	Ross Tran	WLOP	Philipp Ulrich
 Digital art theft – way to find original artist? 			
 Train ML model to identify artist of a given artwork 		Dy WLO	P

Introduction

ResNet50 (<u>Convolutional Neural</u>
 <u>Network</u>)

Analyze pixel info of an input image, learn to recognize and differentiate objects/aspects of it

 Transfer Learning — ResNet50 pre-trained on pictures from ImageNet

Data

- Download All Images (Google Extension)
- ArtStation Portfolios
- Hand sorted through pictures (Colab)

My Drive > art -			
Folders			
Wlop	Ross	Philipp	
Files			
		1	-
		Da Star	7.0

Data

- Accessed using os module
- .csv file listing artists, number of paintings, and calculated class weights

556	
	0.801788
358	0.938838
234	1.113248
	234

- Data generators to get training/validation data (80–20% split)
- Transformed data when training for more robust classification.

Training the Model

Train model for 10 epochs. Reduce learning rate if improvement plateaus.

accuracy: 0.9913
val_accuracy: 0.5223

Freeze core ResNet50 layers. Train model for 25 more epochs. Stop training if no improvement for 5 epochs.

Test completed model on additional data.

```
accuracy: 0.9989
val accuracy: 0.9062
```


Challenges

Not enough data initially.

Solved: only used artists who had > 200 pieces in portfolio.

y: 1.0000 -07.								
accuracy:	1.0000	- va	al_loss:	0.2547	val_accuracy:	0.9152	- 1r:	1.0000e-06
accuracy:	1.0000	- v a	al_loss:	0.2345	val_accuracy:	0.9152	- 1r:	1.0000e-07
accuracy:	1.0000	- va	al_loss:	0.2705	val_accuracy:	0.9062	- 1r:	1.0000e-07
accuracy:	1.0000	- va	al_loss:	0.2593	val_accuracy:	0.9062	- 1r:	1.0000e-07

Solved: Early stopping after 5 epochs.

Conclusions

Actual artist = Ross Predicted artist = Philipp Prediction probability = 58.10 %

Actual artist = Ross Predicted artist = Ross Prediction probability = 98.82 %

Actual artist = Wlop Predicted artist = Wlop Prediction probability = 97.20 %

Actual artist = Philipp Predicted artist = Philipp Prediction probability = 96.20 %

predictAny('drive/MyDrive/art/ross2.jpg', "Ross") [→ 1/1 [======] - 0s 33ms/step Actual artist = Ross Predicted artist = Ross Prediction probability = 94.14 %

0

Pros and Cons

Pros

If expanded, could be useful to people who need to trace an artwork to its original artist.

- Art enthusiasts/students
- Companies/employers

- Currently, only works for 3 artists.
- Doesn't help small artists who don't have enough training images.

Takeaways

- Data quantity & quality matter a lot
- Overfitting and how to fix it
- Google Colab + GPU Runtime

Thank you!

Bibliography

[1] Chollet, François. Keras. 2015, https://github.com/fchollet/keras.

[2] da Costa-Luis, Casper O. "Tqdm: A Fast, Extensible Progress Meter for Python and CLI." Journal of Open Source Software, vol. 4, no. 37, May 2019, p. 1277. DOI.org (Crossref), <u>https://doi.org/10.21105/joss.01277</u>.

[3] Developers, TensorFlow. TensorFlow. Zenodo, 16 Nov. 2022. Zenodo, https://doi.org/10.5281/zenodo.7604251.

[4] Harris, Charles R., et al. "Array Programming with NumPy." Nature, vol. 585, no. 7825, Sept. 2020, pp. 357–62. DOI.org (Crossref), https://doi.org/10.1038/s41586-020-2649-2.

[5] Hunter, John D. "Matplotlib: A 2D Graphics Environment." Computing in Science & Engineering, vol. 9, no. 3, 2007, pp. 90–95. DOI.org (Crossref), <u>https://doi.org/10.1109/MCSE.2007.55</u>.

[6] "Os — Miscellaneous Operating System Interfaces." Python Documentation, <u>https://docs.python.org/3/library/os.html</u>. Accessed 12 Feb. 2023.

[6] "Os — Miscellaneous Operating System Interfaces." Python Documentation, <u>https://docs.python.org/3/library/os.html</u>. Accessed 12 Feb. 2023.

[7] Team, The Pandas Development. Pandas-Dev/Pandas: Pandas. v1.5.3, Zenodo, 19 Jan. 2023. DOI.org (Datacite), https://doi.org/10.5281/ZENODO.7549438.

[8] WLOP. https://wlop.artstation.com/ Accessed 13 Feb. 2023.

[9] Urlich, Philipp A. https://urlich.art/ Accessed 13 Feb. 2023.

[10] Tran, Ross. <u>https://rossdraws.artstation.com/projects</u> Accessed 13. Feb. 2023.